Parabolic subgroups Montreal-Toronto 2018

Alice Pozzi

January 13, 2018

Overview

Tori

Fix k a field, G/k affine algebraic group (e.g. $G = GL_{n,k}$, $Sp_{n,k}$, $O_{n,k}$)

Definition

A split torus T of G is subgroup of G isomorphic to \mathbb{G}_m^n torus is $T \subset G$ such that $T_{\bar{k}}$ is a split torus.

- The diagonal subgroup $D_{n,k}$ is a maximal torus in $GL_{n,k}$;
- The maximal torus in $\operatorname{Sp}_{n,k}$ is isomorphic to \mathbb{G}_m^n under $(a_1,\ldots a_n)\mapsto\operatorname{diag}(a_1,\ldots,a_n,a_1^{-1},\ldots,a_n^{-1});$
- ullet If F number field, $Res_{F/\mathbb{Q}}\mathbb{G}_m$ is a non-split torus .

For a torus T, we let

$$X(T) = \operatorname{Hom}(T, \mathbb{G}_m)$$

be the space of characters of T. It's a finite free \mathbb{Z} -module.

Lie algebras and Adjoint representation

The Lie algebra \mathfrak{g} of G is the tangent space of G at the identity: $\mathfrak{g} = T_eG$. It is an algebra with the product given by the Lie bracket [X,Y] = XY - YX for $X,Y \in \mathfrak{g}$.

The action of G on itself by inner automorphism, induced an automorphism of the tangent space at the identity

Ad:
$$G \to GL(\mathfrak{g})$$

Assume $k = \bar{k}$, $T \subset G$ a maximal torus, G reductive. The vector space $\mathfrak g$ as a representation of T decomposes as

$$\mathfrak{g}=\mathfrak{t}\oplus\bigoplus_{lpha\in\Phi}\mathfrak{g}_lpha$$

where \mathfrak{t} is the Lie algebra of T.

Example: root system of SL_{n+1}

The Lie algebra \mathfrak{sl}_{n+1} is given by

$$\{M \in M_{(n+1)\times(n+1)} \mid Tr(M) = 0\}$$

Let $E_{i,j}$ be the matrix with 1 in the (i,j) entry and 0 elsewhere. The maximal torus is $T \subset \mathrm{SL}_{n+1}$ given by $\mathbb{G}_m^n \subset \mathrm{SL}_{n+1}$

$$(t_1,t_2,...t_n) \mapsto (t_1,t_2,...t_n,(t_1t_2...t_n)^{-1})$$

For $1 \le i, j \le (n+1)$, $i \ne j$, define

$$\phi_{i,j} = a_{i,i} a_{j,j}^{-1}$$

where $a_{i,j}$ are the usual coordinate functions for $M_{(n+1)\times(n+1)}$. Then $\forall t \in T$

$$Ad(t)E_{i,j} = tE_{i,j}t^{-1} = \phi_{i,j}(t)E_{i,j}$$

$$\mathfrak{sl}_{n+1} = \mathfrak{t} \oplus \sum_{i,j} (\mathfrak{sl}_{n+1})_{\phi_{i,j}}$$

where $(\mathfrak{sl}_{n+1})_{\phi_{i,j}} = \langle E_{i,j} \rangle$.

The characters $\phi_{i,j} \in X(T)$ satisfy the relations:

- $\bullet_{i,j} = \phi_{j,i}^{-1}$
- $\phi_{i,j} = \prod_{i \le m < j} \phi_{m,m+1} \text{ if } i < j.$

Let $E = X(T) \otimes \mathbb{R} \simeq \mathbb{R}^n$. We see that

$$\alpha_i = \phi_{i,i+1}$$

is a basis of X; a_i can viewed as the vector $(0, \ldots, 0, 1, -1, \ldots)$ with 1 in the i-th position in \mathbb{R}^{n+1} . The $\phi_{i,j}$ span an n-dimensional subspace in \mathbb{R}^{n+1} .

Denote by

$$\Delta = \{\alpha_i\} \subset \Phi = \{\phi_{i,j}\}$$

We have

dim
$$SL_{n+1} = (n+1)^2 - 1 = (n+1)n + n$$

= $|\Phi| + |\Delta|$
= $|\Phi| + \text{rk}(T)$

The root system of sl_{n+1} is called A_n . For example, A_2 can be represented as in the picture.

Abstract root system

Let E/\mathbb{R} be a finite vector space.

Definition

An (abstract) root system in the real vector space E is a subset Φ of E satisfying:

- Φ is finite, spans E, and does not contain 0. (The elements of Φ are called roots.)
- 2 If $\alpha \in \Phi$, the only multiples of $\alpha \in \Phi$ are $\pm \alpha$.
- **1** If $\alpha \in \Phi$, there exists a reflection σ_{α} relative to α , which leaves Φ stable.
- If then $\alpha, \beta \in \Phi$, $\sigma_{\alpha}(\beta) \beta$ is an integral multiple of α .

The Weyl group of Ψ is

$$W = W(\Psi) = \langle \sigma_{\alpha}, \alpha \in \Psi \rangle \subset GL(E).$$

A subset $\Delta \subset \Psi$ is called a basis if $\Delta = \{\alpha_1, \dots \alpha_n\}$ is a basis of E, relative to which each $\beta \in \Psi$ has a (unique) expression $\beta = \sum_i c_i \alpha_i$, where the c_i are integers of the same sign.

The Weyl group can be identified with $W = N_G(T)/T$, where $N_G(T)/T$ for a maximal split torus T in G.

Example

For example, for $G = \mathrm{SL}_{n+1}$, the Weyl group is S_n . The normalizer in G of the diagonal subgroup is the group of monomial matrices, i.e. matrices having exactly one non-zero element for each row and column.

Borel subgroups

Definition

A Borel $B \subset G$ subgroup is a maximal (closed) connected solvable subgroup.

For example, for $G = GL_{n,k}$ a Borel subgroup is $T_{n,k}$, the subgroup of upper triangular matrices.

Theorem (Fixed point Theorem)

Let G be a connected solvable group acting on a complete variety X. Then G has a fixed point in X

Let V/k be a finite vector space, $\mathscr{F}(V)$ a flag complete flag variety. A connected solvable subgroup $G \subset \mathrm{GL}(V)$ acts on $\mathscr{F}(V)$ and the action has a fixed point. Thus, G stabilizes a complete flag in V!

Theorem

- If $B \subset G$ is a Borel subgroup, then G/B is projective.
- All Borel subgroups are conjugate of each other, in particular of the same dimension.

Example

If V/k is a vector space with basis $v_1, \dots v_n$, we fix the flag $F = (V_1 \subset V_2 \cdots \subset V_n)$.

$$V_i = \langle v_1, \dots v_i \rangle$$

Then F is a point in the flag variety $\mathscr{F}(V)$. If $G = GL_n(k)$, then

$$\operatorname{Stab}_{G}(F) = T_{n,k}$$
 orbit $(F) = \mathscr{F}(V)$.

Thus, $G/B \simeq \mathscr{F}(V)$ is projective.

Definition of Parabolic subgroups

Definition

A closed subgroup $P \subset G$ is **parabolic** if the quotient G/P is projective.

Theorem

A closed subgroup *P* of *G* is parabolic if and only if it contains a Borel subgroup.

Proof.

" \Rightarrow " If *P* is parabolic, G/P is a complete variety, so *B* fixes a point in $G/P \Rightarrow gBg^{-1} \subset P$;

" \Leftarrow " If $B \subset P$, then $G/B \to G/P$ is a surjective map from a complete variety $\Rightarrow G/P$ is complete, hence projective (because G/P is always quasi-projective).

Tits systems

G group \rightsquigarrow G reductive group

B,N subgroups of G such that G is generated by $N,B \leadsto B$ Borel, N normalizer of a maximal torus

 $T = B \cap N$ normal in $N \rightsquigarrow T$ maximal torus

 $W = N/T \rightsquigarrow W$ Weyl group

 $S \subset W$ a set of involutions generating $W : \rightsquigarrow S = \Delta$

Definition

We say that (G,B,N,S) is a Tits system if

- If $\rho \in S$, $\sigma \in W$, $\rho B \sigma \subset B \sigma B \cup B \rho \sigma B$
- If $\rho \in S$, $\rho B \rho \neq B$.

Let (G,B,N,S) be a Tits system, $I \subset S$.

Theorem (Bruhat decomposition)

In particular, For $I \subset S$, define $W_I = \langle \sigma \mid \sigma \in I \rangle$

$$P_I = BW_IB$$

- $I = \emptyset : P_{\emptyset} = B$ is the Borel subgroup
- I = S: $P_S = G$

Bruhat-Tits Theorem

Theorem

- The P_I 's are parabolic subgroups of G
- ② All the parabolic subgroups of G containing B are of the form P_I for some $I \subset S$.
- If P_I and P_J are conjugate, then I = J.

Corollary

Given a Borel subgroup $B \subset G$, there exist 2^r -parabolic subgroups containing B where r is the semisimple rank of G.

In particular, in order to determine all the parabolic subgroups, it suffices to find the maximal parabolic subgroups P_I of $I = S \setminus \{i\}$ and take their intersection.

Parabolic subgroups of $GL_{n,k}$

The semisimple rank of GL_n is n-1. Fix a basis $v_1, \ldots v_n$ and let $V_i = \langle v_1, \ldots v_i \rangle$. Let F be the complete flag $F = (V_1 \subset V_2 \cdots \subset V_n)$. Then

Theorem

The parabolic subgroups of $GL_{n,k}$ containing the standard Borel $B_{n,k}$ are the stabilizers of a subflag of F.

Let F_I with $I \subset \{1, \ldots n-1\}$ be the flag obtained from V removing the subspaces of indices in I. Then P_I is the stabilizer of such flag in the flag variety of corresponding numerical invariants $\mathscr{F}(I)$. All the $P_I's$ look like "upper triangular matrices with blocks on the diagonal".

Parabolic subgroups of $Sp_{n,k}$

Let V a k-vector space with a symplectic pairing Ψ . We can find a maximal isotropic basis $v_1, \ldots v_n$ such that

$$V_i = \langle v_1, \dots v_i \rangle \subset \langle v_1, \dots v_i \rangle^{\perp}$$

so that the pairing is given by

$$\Psi = \begin{bmatrix} 0 & \mathbb{1}_n \\ -\mathbb{1}_n & 0 \end{bmatrix}$$

A maximal torus in $T \subset \operatorname{Sp}$ is $\mathbb{G}_m^n \subset \operatorname{Sp}_{n,k}$ as

$$(t_1, t_2, \dots t_n) \mapsto \operatorname{diag}(t_1, t_2, \dots t_n, t_1^{-1}, t_2^{-1}, \dots t_n^{-1})$$

Thus, rk(G) = n.

Theorem

The parabolic subgroups of $Sp_{n,k}$ are the stabilizers of isotropic flags.

 $I \subset \{1,...,n\}$, let $F_I = \{V_1,V_2,...V_j...\}$ be the subflag obtained by omitting V_i with $i \in I$ from the subflag.

G acts on the flag variety $\mathscr{F}(I)$ of numerical invariants $i \notin I$. The orbit of *F* is the subvariety of isotropic subspaces and

$$P_I = \operatorname{Stab}_G(F_I)$$
.

All the P_I 's are distinct, and determined by the numerical invariants of the flag.

These are all the parabolics, because the rank of G is n.

Parabolic subgroups of U(n,m)

Let U(n,m) be the **real** algebraic group associated to a hermitian form on \mathbb{C}^{n+m} with basis $v_1, v_2, \dots v_{n+m}$

$$(u,v) = \bar{u}^t \Psi v$$

$$\Psi = \begin{bmatrix} 0 & 0 & \mathbb{1}_m \\ 0 & \mathbb{1}_{n-m} & 0 \\ \mathbb{1}_m & 0 & 0 \end{bmatrix}$$

More precisely, $U(n,m)(\mathbb{R})=\{M\in \mathrm{GL}_n(\mathbb{C})\mid \bar{M}^t\Psi M=\Psi\}$. The maximal torus is isomorphic to $\mathbb{G}_m^m\times U(1)^{n-m}$. via $(t,u)\mapsto (t,u,t^{-1})$. The \mathbb{R} -semisimple rank of G is m.

Let
$$V_r = \langle e_1, \dots e_r \rangle \subset V_r^{\perp} = \langle e_1, e_2 \dots e_n, e_{n+r+1}, \dots e_{n+m} \rangle$$
 for $1 \leq r \leq m$.
 Let $F = (V_1, \dots V_m)$ be the maximal isotropic flag.

Theorem

The parabolic subgroup P_I of U(n,m) is the stabilizers of isotropic subflags of F obtained by removing the V_i 's for $i \in I$.

- The parabolic subgroups P_I are **real** subgroups, because the flags they stabilize is defined over \mathbb{R} . Since m is the rank of the maximal split torus over \mathbb{R} , these are all the real parabolic subgroups. In fact U(n,m) can be defined over \mathbb{Q} and the P_I 's are **rational** subgroups.
- $U(n,m) \simeq U(n+m) \simeq \mathrm{GL}_{n+m,\mathbb{C}}$ has rank n+m-1, so has 2^{n+m-1} parabolic subgroups.

Thank you for your attention!

